Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Ping Xiao

School of Chemistry and Materials Science, Wenzhou University, Wenzhou 325027,
People's Republic of China

Correspondence e-mail:
hp_xiao@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.072$
$w R$ factor $=0.141$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[[diaqua(2-sulfonatobenzoato$\left.\kappa^{2} O: O^{\prime}\right)$ zinc(II)]- $\mu_{2}-1,3-d i-4-p y r i d y l p r o p a n e-~$ $\left.\kappa^{2} N: N^{\prime}\right] N, N$-dimethylformamide solvate]

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$.$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the $\mathrm{Zn}^{\mathrm{II}}$ atom is coordinated by two N atoms from two 1,3-di-4-pyridylpropane molecules, two O atoms from one 2-sulfonatobenzoate dianion and two aqua O atoms, in a distorted octahedral geometry. The 2-sulfonatobenzoate dianions function as chelating ligands and the 1,3-di-4pyridylpropane as a μ_{2}-bridging ligand, forming a chain. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link neighbouring chains into a three-dimensional network.

Comment

2-Sulfobenzoic acid ($\mathrm{o}-\mathrm{H}_{2} \mathrm{sb}$), a ligand with a combination of one sulfonic group and one carboxyl group, is a good ligand for the preparation of metal-organic coordination polymers (Li \& Yang, 2004; Xiao, 2005; Xiao, Shi \& Cheng, 2005; Su et al., 2005; Zhang et al., 2005). The flexible ligand 1,3-di-4pyridylpropane (dpp) can rotate freely to coordinate to two metal ions (Li, Cao et al., 2004; Xiao, Wang et al., 2005). In this work, we used both $o-\mathrm{H}_{2} \mathrm{sb}$ and dpp to construct the title compound, $\left[\mathrm{Zn}(\mathrm{dpp})(o-\mathrm{sb})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n} . n \mathrm{DMF}$, (I) (DMF is dimethylformamide).

Received 13 June 2006
Accepted 14 June 2006

In compound (I), the $\mathrm{Zn}^{\mathrm{II}}$ atom is in a distorted octahedral geometry, coordinated by two aqua O atoms, two O atoms of a 2-sulfonatobenzoate dianion and two N atoms of two 1,3-di-4pyridylpropane molecules (Fig. 1 and Table 1). The o-sb ligand chelates to the $\mathrm{Zn}^{\mathrm{II}}$ centre, forming a seven-membered ring. The dihedral angle between the planes of the o-sb ring and its carboxylate group is $115.6(3)^{\circ}$, which is much larger than in the complex $\left[\mathrm{Ni}(o-\mathrm{sb})(\text { bpe })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n} \cdot 0.25 n \mathrm{H}_{2} \mathrm{O}$ [bpe is $1,2-$ bis(4-pyridyl)ethylene; Xiao, Li \& Hu, 2005]. The C1-O1 bond $[1.268(5) \AA$] is longer than the $\mathrm{C} 1-\mathrm{O} 2$ distance [1.230 (5) A]. The 1,3-di-4-pyridylpropane ligands function as μ_{2}-bridging ligands, forming a chain (Fig. 2).

Figure 1
The coordination environment of the $\mathrm{Zn}^{\mathrm{II}}$ atom in (I), with the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level [Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.]

The stability of the solid-state structure of (I) is significantly enhanced by hydrogen-bonding interactions (Table 2). The voids in this structure are filled by N, N-dimethylformamide solvent molecules, which are linked by hydrogen bonds.

Experimental

An aqueous solution (10 ml) of $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.20 \mathrm{mmol}$, 0.051 g) was added slowly to an N, N-dimethylformamide solution $(10 \mathrm{ml})$ of 1,3 -di-4-pyridylpropane ($0.20 \mathrm{mmol}, 0.040 \mathrm{~g}$) and 2-sulfobenzoic acid ($0.20 \mathrm{mmol}, 0.041 \mathrm{~g}$). Colourless crystals of (I) suitable for X-ray analysis were obtained by leaving the solution at room temperature for three weeks.

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~S}\right)\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot-$	$Z=8$
$\quad \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$	$D_{x}=1.464 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=572.95$	Mo K 2 radiation
Orthorhombic, $P b c a$	$\mu=1.08 \mathrm{~mm}^{-1}$
$a=16.933(4) \AA$	$T=298(2) \mathrm{K}$
$b=10.918(3) \AA$	Prism, colourless
$c=28.116(6) \AA$	$0.32 \times 0.18 \times 0.16 \mathrm{~mm}$
$V=5198(2) \AA^{3}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2002 $)$
$\quad T_{\min }=0.725, T_{\max }=0.847$

26390 measured reflections

 4736 independent reflections 4326 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$$\theta_{\text {max }}=25.3^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.141$
$S=1.35$
4736 reflections
327 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$2.075(3)$	$\mathrm{Zn} 1-\mathrm{O} 3$	$2.128(3)$
$\mathrm{Zn} 1-\mathrm{O} 7$	$2.099(3)$	$\mathrm{Zn} 1-\mathrm{N} 11$	$2.142(4)$
$\mathrm{Zn} 1-\mathrm{O} 6$	$2.118(3)$	$\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.161(3)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 7$	$92.54(13)$	$\mathrm{O} 6-\mathrm{Zn} 1-\mathrm{N} 1$	$88.65(13)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 6$	$175.51(11)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 1$	$90.10(13)$
$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O} 6$	$86.65(13)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$95.92(13)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 3$	$93.43(12)$	$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$85.50(14)$
$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{O} 3$	$173.88(13)$	$\mathrm{O} 6-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$88.42(13)$
$\mathrm{O} 6-\mathrm{Zn} 1-\mathrm{O} 3$	$87.50(13)$	$\mathrm{O} 3-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$92.52(14)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$86.96(13)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$175.98(14)$
$\mathrm{O} 7-\mathrm{Zn} 1-\mathrm{N} 1$	$91.58(13)$		

Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.82	2.04	2.860 (4)	175
O6-H6B \cdots O $8^{\text {iii }}$	0.82	1.89	2.707 (5)	176
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2^{\text {ii }}$	0.82	1.83	2.637 (5)	168
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 8^{\text {iv }}$	0.82	1.85	2.667 (5)	171

Symmetry codes: (ii) $-x+\frac{1}{2}, y+\frac{1}{2}, z$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2}, z+1$; (iv) $x-1, y, z+1$.
H atoms were placed in calculated positions and refined using a riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.93 to $0.97 \AA$ for H atoms bonded to C and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$. $U_{\text {iso }}(\mathrm{H})$ values were set to $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ or $1.5\left(\mathrm{C}_{\text {methyl }}\right)$. The methyl groups were allowed to rotate but not to tip.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

We acknowledge financial support from Zhejiang Provincial Natural Science Foundation (grant No. Y404294), the '151' Distinguished Person Foundation of Zhejiang Province and the '551' Distinguished Person Foundation of Wenzhou.

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Li, X., Cao, R., Sun, D., Bi, W., Wang, Y., Li, X. \& Hong, M. (2004). Cryst. Growth Des. 4, 775-780.
Li, X.-H. \& Yang, S.-Z. (2004). Acta Cryst. C60, m423-m425.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Su, W., Bi, W.-H., Li, X. \& Cao, R. (2005). Acta Cryst. C61, m16-m18.
Xiao, H.-P. (2005). Acta Cryst. E61, m942-m944.
Xiao, H.-P., Li, X.-H. \& Hu, M.-L. (2005). Acta Cryst. E61, m506-m508.
Xiao, H.-P., Shi, Q. \& Cheng, Y.-Q. (2005). Acta Cryst. E61, m907-m909.
Xiao, H. P., Wang, J. G., Li, X. H. \& Morsali, A. (2005). Z. Anorg. Allg. Chem. 631, 2976-2978.
Zhang, W.-B., Wang, J.-G., Chen, H.-X. \& Xiao, H.-P. (2005). Acta Cryst. E61, m2559-m2560.

[^0]: © 2006 International Union of Crystallography All rights reserved

